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We investigate, assess, and suggest possibilities for a measurement of the local spin susceptibility of a
conducting low-dimensional electron system. The basic setup of the experiment we envisage is a source-probe
one. Locally induced spin density (e.g., by a magnetized atomic force microscope tip) extends in the medium
according to its spin susceptibility. The induced magnetization can be detected as a dipolar magnetic field, for
instance, by an ultrasensitive nitrogen-vacancy center based detector, from which the spatial structure of the spin
susceptibility can be deduced. We find that one-dimensional systems, such as semiconducting nanowires or carbon
nanotubes, are expected to yield a measurable signal. The signal in a two-dimensional electron gas is weaker,
though materials with a high enough g-factor (such as InGaAs) seem promising for successful measurements.
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I. INTRODUCTION

The spin susceptibility quantifies the magnetic polarization
arising as a response to a weak magnetic perturbation of the
system. In the same way as the density-density response func-
tion is a key characteristic of the charge degrees of freedom,
the spin susceptibility is fundamental for the description of
spin excitations.

The local spin susceptibility is perhaps most often used in
the form of the Rudermann-Kittel-Kasuya-Yosida (RKKY)
interaction.1–3 It describes an indirect coupling of local-
ized spins, arising through the spin polarization induced
in the band of itinerant electrons. RKKY interaction based
effects are too numerous to list—here we only mention
issues important from the point of view of semiconductor
based4,5 scalable architectures6,7 for fault tolerant quantum
computation.8 RKKY has been demonstrated to allow for
long-distance controlled coupling of a qubit pair,6 to affect the
decoherence,7 and predicted to induce a helical ferromagnetic
transition of nuclear spins in a remarkable electron-nuclear
feedback mechanism in one dimension.9,10 Such a nuclear
spin phase transition would substantially reduce the dephasing
times of GaAs spin qubits, while the arising effective helical
field has been found in helping to establish the Majorana
fermion phase11,12 or even induce exotic fractionally charged
fermions.13,14

For the effects just mentioned, the spatial structure of
the susceptibility is crucial. This structure is known for the
model of noninteracting electrons.15 In low dimensions, these
results were extended to include the effects of the spin-
orbit coupling,16,17 electron-electron interactions in one18 and
two19–23 dimensions, and both together.26 However, generally
speaking, the interaction effects are very challenging to
calculate,22 while often playing a decisive role, as, e.g., for
the above-mentioned helical phase transition.23

Experimentally, the spin polarization in response to a
uniform magnetic field is accessible.24,25 However, it cor-
responds to the limit of the zero wave vector of the static
spin susceptibility and does not reveal its spatial dependence.
Theoretical calculations predict this structure to be nontrivial,
such as having nonstandard Fermi liquid features.26,27 Apart

FIG. 1. (Color online) Source-probe measurement setup. The
magnetized source (blue cone with an arrow) excites the medium
(green). The spin density excitations (pictured as waves) traversing
the medium are detected by the probe containing an NV center
(red sphere). The probe collects the signal from the magnetization
underneath (light green).

from interactions, an interesting influence is expected to stem
from the spin-orbit interactions. They will induce nonzero
transversal components of the spin susceptibility tensor and
modulate the diagonal ones in an anisotropic way. This, for
example, lifts the restriction on spontaneous ferromagnetic
order in low dimensions, imposed by the Mermin-Wagner
theorem.28 From a broader point of view, breaking the spin
rotational symmetry and spatial isotropy, which the spin-
orbit coupling causes, is known to bring up effects that are
potentially useful for spintronics.29,30 Elucidation of these
effects on the local spin susceptibility calls for an experimental
verification, which so far has remained out of reach, and which
motivates our investigations here. We expect a strong impetus
for the many-body theory itself once such measurements are
realized, the susceptibility serving as a test-bed for different
many-body theory approaches.

In this article, we assess whether the still missing ex-
perimental observation of the spatial structure of the spin
susceptibility could be achieved soon, motivated by the recent
advances in the nitrogen-vacancy (NV) center based nanoscale
magnetic field detectors.31 From this perspective, we analyze
various materials, geometries, and measurement designs,
focusing on typical two- and one-dimensional semiconductor
structures, such as two-dimensional electron gas (2DEG) or
semiconducting nanowires.

Our estimates lead us to the conclusion that with the
current NV center detection sensitivity, the measurement of
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the local spin susceptibility is challenging, but possible. The
main properties favoring a measurable signal magnitude are
low electron density and high g-factor of the material. We find
one-dimensional systems, such as semiconducting nanowires
and carbon nanotubes, to provide a measurable signal even
without taking into account interactions, which are expected
to further boost the signal by several orders of magnitude.
The two-dimensional structures we considered yield a much
weaker signal. Graphene (single layer, bilayer, pristine, or
doped) spin susceptibility seems not to be amenable for the
measurement. Typical noninteracting 2DEGs fall short of the
detection limit by one to three orders of magnitude. We expect
the interactions to bring a high g-factor 2DEG (InGaAs)
to the detection limit, while only the signal refocusing or
a very strong exchange based source give hope to enable
measurement in the standard GaAs 2DEG.

The article is organized as follows: In Sec. II we in-
troduce a formal description and define basic quantities
relating to the foreseen spin susceptibility measurement. In
Sec. III we estimate the signal in a source-probe setup for a
dipolar (Sec. III A) and exchange (Sec. III B) based probe. In
Sec. III C we explain the refocusing technique, which allows
us to enhance the signal in a two-dimensional medium, and in
Sec. III D we discuss the effects of interactions. In Sec. IV we
study carbon-based nanostructures (graphene and carbon nan-
otubes). In Sec. V A we suggest a setup for measuring the short
distance structure of the spin susceptibility, and in Sec. V B
we consider an alternative to a source-probe measurement
and show how the signal can be extracted from the medium
equilibrium magnetization noise. We present our conclusions
in Sec. VI.

II. SPIN SUSCEPTIBILITY

The spin susceptibility tensor χαα′ is defined as a linear-
response quantity relating the induced magnetic moment
density m(r,t) to an external magnetic field B(r,t),

〈mα(r,t)〉 = −μαμα′

∫
dr′dt ′χαα′ (r,r′; t − t ′)Bα′(r′,t ′).

(1)

The spatial integration goes over the medium volume, while
the time (and frequency, below) integration is over the whole
real axis. The same integration limits are assumed hereafter,
unless specified explicitly. The Greek indices label Cartesian
coordinates, μα is the particle magnetic moment (in general
anisotropic), and the angular brackets denote an expectation
value 〈X〉 = tr(ρX) taken with the system density matrix
ρ. The relation between a magnetic field produced by the
source and a resulting magnetic moment tested by the probe,
Eq. (1), suggests a straightforward way to measure the spin
susceptibility in a source-probe experiment. In the following,
we will analyze mostly such a setup, depicted in Fig. 1. There
a magnetized tip is the source of a local magnetic field, which
excites the medium. The source couples to the medium via the
Zeeman interaction,

HI = −
∫

dr m(r) · B(r,t). (2)

The magnetization of the medium m(r) is proportional to the
spin polarization ρs(r), mα(r) = −μαρs

α(r), where ρs(r) =
ρ(r)s, with ρ(r) the particle density operator and h̄s the
spin operator. A typical example of a “medium” is a two-
dimensional electron gas in a semiconductor heterostructure,
for which μα = gμB , with g the effective g-factor, μB the
Bohr magneton, s = σ/2, and σ the vector of Pauli matrices.
The emerging spin polarization spreads to large distances, in a
form described by the medium spin susceptibility. It is probed
locally by an NV-based sensor located at another atomic force
microscope (AFM) tip. This way, the spatial structure of the
spin susceptibility on length scales down to the source-probe
spatial resolution can be inferred.

For perturbations periodic in time, B(r,t) =
B(r,ω) cos(ωt), it is more convenient to work with the
Fourier transform of Eq. (1),

〈mα(r,ω)〉 = −μαμα′

∫
dr′χαα′ (r,r′; ω)Bα′(r′,ω), (3)

where the spin susceptibility in the frequency space is

χαα′ (r,r′; ω) =
∫

dt χαα′(r,r′; t)eiωt . (4)

It fulfills the Kramers-Kronig relation between the real and
imaginary parts,

Reχαα′ (r,r′; ω) = 1

π
P

∫
dω′ Imχαα′ (r,r′; ω′)

ω′ − ω
. (5)

Here, P defines the principal value integral.
We will mostly consider the response to a static perturba-

tion, given by Eq. (3) with ω = 0. We note that the static
susceptibility χαα′ (r,r′; ω = 0) is purely real. In addition,
from now on we restrict ourselves to a diagonal component
of the susceptibility and assume that the equilibrium state
has space translation symmetry. This allow us to introduce
a translationally invariant scalar function, χ (r − r′,t − t ′) ≡
χαα(r,r′; t − t ′).

For a noninteracting system with spin rotational invariance,
the spin susceptibility is equal to the density-density response
(the Lindhard function). The long-distance static susceptibility
of a noninteracting system of particles with quadratic disper-
sion at zero temperature is given by15

χ (r) ≈ cdndNd sin(2kF r − dπ/2)(kF r)−d . (6)

Here d = 1,2 is the dimension of the system, and we
introduced χ (r) ≡ χ (r,ω = 0), a notation we use also below.
The geometry parameters cd are defined as c1 = π/4 and
c2 = 1. The Fermi wave vector kF corresponds to the Fermi
energy εF = h̄2k2

F /2m, with m the effective mass. The electron
density per spin, Nd , and the density of states at the Fermi
energy, nd , are related by nd = ∂Nd/∂εF = dNd/2εF , and
read

n1 = m/πh̄2kF , n2 = m/2πh̄2. (7)

The two previous equations combined lead to the following
expression for the susceptibility:15

χ (r) ≈ m

4dπdh̄2 kd−2
F r−d sin(2kF r − dπ/2). (8)

We will use Eq. (8) further on for scaling estimates. Therefore,
the results for the expected signal magnitude we plot are
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to be taken as a limit from below, since, as mentioned in
the Introduction, the interaction effects are expected to boost
the spin susceptibility (see Sec. III D for the enhancement
magnitude discussion).

III. SOURCE-PROBE SETUP

We now analyze in detail the source-probe setup. The
coordinate system and parameters are shown in Fig. 2.
The dipole field of a magnetic tip serves as the source. In the
medium this field is localized over linear distance λs , being
the sum of the tip width and its distance to the medium. The
induced spin polarization spreads in the medium according
to its spin susceptibility. At distance R (and, possibly, with
a controllable time delay for a time-dependent source), the
probe detects the local spin accumulation by collecting the
dipolar field of the magnetic moment induced in an area with
linear dimension λp, being the distance of the probe from the
medium. This way, the spin susceptibility can be, in principle,
mapped out in both space and time variables.

The measurement is, however, by no means straightfor-
ward. First of all, if the spatial structure of the susceptibility is
targeted (rather than a response to a uniform field, which has
so far been the only experimentally available characteristic of
the susceptibility in most cases), both the source and the probe
resolutions have to be below the susceptibility natural length
scale. The latter is, as follows from Eq. (6), set by the Fermi
wavelength, typically tens of nanometers in a semiconductor.
Second, though such small magnetic sources are available,
scaling the probe down necessarily makes the signal weaker.
Third, the dipolar field of the source magnet adds to the field
originated in the medium and it must be assured that the
former is negligible compared to the latter, or the two need to
be discriminated, by some scheme identifying a weak signal
in a large background. Finally, to learn useful information
about the time and frequency structure of the susceptibility,
the detection time resolution must be below the inverse of
the natural frequency scale of the susceptibility, typically 1 ps
(corresponding to a 1 meV bandwidth Fermi energy). We will
further assess the susceptibility measurements for different

FIG. 2. (Color online) The source-probe setup redrawn from
Fig. 1 showing the coordinate system and distance parameters: λs ,
λp , and R are, respectively, the source-medium, probe-medium,
and source-probe in-medium distances. The local magnetic field is
produced by the source (blue) placed on the distance λs from the
surface. The magnetic field is measured by the probe (yellow) placed
on the distance λp from the surface. The probe measures the local
magnetic field proportional to the spin susceptibility χ (R), where R

is the distance between the probe and the source.

materials and geometries, with the above list of possible issues
in mind.

A. Dipolar field source

To estimate the signal seen by the probe, we assume the
source to be a magnetic moment M. Its dipolar magnetic field
at distance r is defined by tensor T,

B(r) = μ0

4π

(
3

r · M
r5

r − M
r3

)
≡ T(r)M, (9)

with the permeability μ0 = 4π × 10−7 kg m C−2. We adopt
a coordinate system with the origin in the medium such that
the source is at ls = (0,0,λs) and the probe at lp = (R,0,λp).
The total field at the probe is a sum of two contributions,
Btot = B0 + Bt : the background field B0, which is the source
dipolar field

B0 = T(lp − ls)M, (10)

and the signal field Bt , which is due to the spin accumulation
transported in the medium,

Bt = −
∫

dr dr′ T(lp − r)χ ′(r − r′)T(r′ − ls)M. (11)

Here we introduced a tensor χ ′
αα′ = μαμα′χαα′ . We note that if

the source magnet cannot be considered pointlike, M should be
replaced by a magnetization density m(r′′) and the right-hand
side of Eq. (11) should be integrated also over r′′ spanning the
magnet volume.

To characterize a measurement feasibility, we introduce two
figures of merit. One is the signal absolute magnitude, Bt . It
is to be compared with the demonstrated NV center detection
limit in the order of tens of nanoTesla at ambient conditions.
Second is the signal-to-background ratio, γ = Bt/B0. Because
a static magnetic field background is irrelevant for the NV
sensor, we introduce also a modified coefficient γ ′,

γ ′ = ∂λs
Bt/∂λs

B0, (12)

which we define as the ratio of changes of the signal and the
background upon changing the source to medium distance.
Since it is assumed that R � λs holds in the measurement
setup, the signal to background ratio is much higher for the
change (rather than the absolute value) of the magnetic field
with respect to the variation of the source to medium distance,
offering a lock-in technique.

An alternative lock-in technique is based on time modula-
tions of the electron density, e.g., by a back gate. Such gating
does not change the background field B0, allowing to separate
the signal from background once the former is measurable,
no matter how big the latter is. We note that changes in the
Fermi wave vector as small as δkF = π/2R revert the spin
susceptibility, and thus the signal; see Eq. (8). This lock-in
technique is optimal from our point of view, as it makes the
background field value irrelevant. Nevertheless, we will give
the coefficients γ and γ ′ to illustrate the ratio of the signal and
background contributions to the field at the probe.

We now make several approximations to evaluate Eq. (11)
for a static response. We assume the distance between the
source and probe R is the largest scale in the system, R �
λp,λs,1/kF . It allows us to use the long-distance limit for
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the susceptibility. We neglect the in-plane components of the
source field, as they are much weaker than the z component.
Neglecting, in addition, the spin-orbit effects, the resulting
spin accumulation is along ẑ everywhere. We expect the
error stemming from these approximations to be exceeded
in importance by our uncertainty about the microscopic shape
of the source and its magnetic field. Because of this lack of
information, the results that follow are expected to contain
unknown tip-geometry-dependent prefactors of the order of
1, which we indicate by using the ∼ sign. With these
simplifications, we get the signal magnitude as

Bt ∼ − �2
d

16π2
(gμBμ0)2M(λsλp)d−3χ (R)d, (13)

with constants �1 = 2, �2 = π , so that Ad (x) = �dx
d is a

volume of a d-dimensional sphere of radius x. Further,

γ ∼ �2
d

4π
(gμB)2μ0(λsλp)d−3R3χ (R)d, (14)

and finally γ ′ ≈ (1 − d/3)(R/λs)2γ . These results can be
understood as follows. The probe sees a dipole field Bt ∼
dMpTzz(λp ẑ) of an induced magnetic moment Mp ∼
mpAd (λp). The dimensionless geometric factor d is dis-
cussed below. The magnetization density is proportional to
the total “flux” of the source field in the medium and the
susceptibility, mp ∼ −�s(gμB)2χ (R). The flux is an area
integral of the source field, �s ∼ Ad (λs)Bs(0). Finally, the
field under the source is the dipole field Bs(0) ∼ Tzz(λs ẑ)M .

In going from Eq. (11) to Eq. (13), we used dimensional
analysis to single out the natural parameter dependence. Doing
so, the signal is parametrized by a dimensionless factor d ,
which is a function of λpkF . This is consistent with the limit
of large R, and the leading corrections to the results below
are linear in the small parameters λp/R and 1/kF R. Next, we
specify d .

The goal is to maximize both the signal and the signal-
to-background ratio. As the latter is independent of M , it
is beneficial to use a larger M and bring it as close to
the medium as possible. The description of the magnet as
a point dipole holds only at distances larger than its linear
dimension. In other words, the achievable source magnetic
field is limited by the magnet remanent field Br = (μ0/4π )mr ,
with mr the material magnetization density (typical remanent
fields of hard ferromagnets are Br = 0.3–1.5 T). We therefore
set M ∼ λ3

smr . The size of the magnet which produces the
maximal signal is then set by the spin susceptibility wavelength
λ

opt
s = π/2kF . This optimal design means the source magnet is

designed to produce a maximal possible field, Br , within only a
flux tube with a diameter λ

opt
s . This is approximately achievable

using a prolonged magnetized pillar with the tip width of the
order of λ

opt
s . Deviations from the optimal design of the source

suppress the signal: if the source is made smaller, the signal
diminishes trivially; if the source is made larger, the signal
diminishes because of the susceptibility sign oscillations. We
do not articulate this suppression any further, as it depends on
the tip geometry details.

With the optimal source described above, we can assume
the magnetization under the probe is of the form mp(r) ≈
const × cos[2kF (x − R)], which allows us to calculate the

dimensionless factor d in the limit of large R. We get
2(α) = 2α exp(−α), with α = 2kF λp, whereas we state
only the limits in one dimension (see Appendix for details),
1(0) = 1, 1(α � 1) ≈

√
πα3/2 exp(−α). If the probe is

far away from the medium, the signal is collected from a large
area. As a result, it is exponentially suppressed, due to the
sign oscillations of the magnetization. In one dimension, 1

grows monotonically upon diminishing the distance between
the probe and the medium. In two-dimensional systems, 2

goes through a maximum at λp = 1/2kF and decays at small
distances, 2(0) = 0. The main reason is that a field of a
planar magnet saturates close to the medium,32 whereas that
of a line magnet diverges—within our model—namely, the
one (two)-dimensional description of the wire (2DEG), which
we use, is valid only at distances from it that are larger than the
transversal dimension w of the structure, so that the presented
formulas are limited to λp,λs � w.

Taking together all factors discussed above, we rewrite
Eq. (13) as

Bt ∼ Br

�2
d

24+dπd
μ0(gμB)2 m

h̄2k2
F

λd−3
p

1

Rd
d (2kF λp), (15)

where we suppressed the sine-like oscillating factor from the
susceptibility.33 Similarly, we get

γ ∼ − �2
d

21+dπ4d
μ0(gμB)2 m

h̄2

R3−d

λ3−d
p

kF d (2kF λp). (16)

These formulas allow us to estimate how the figures of merit
depend on material and setup parameters: The stronger the
source magnet and the material g-factor are, and the closer
the probe is to the medium, the better. On the other hand,
the scaling on the Fermi wave vector and the source-probe
distance is opposite for the two figures of merit.

In Fig. 3, we illustrate the measurement feasibility for two
typical III-V semiconductors. Results given there show that
at a distance of the order of a micron from the source the
signal falls short by two to four orders of magnitude for
2DEG samples. On the other hand, a one-dimensional wire
with a relatively high g-factor seems very promising. We
note, however, that the interactions are expected to generally
increase the susceptibility, which might considerably improve
the signal measurability (we demonstrate this quantitatively
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FIG. 3. (Color online) Figures of merit for a dipolar source in
(a) 2DEG and (b) nanowire. Plotted are the signal divided by 10 nT
(solid lines), and signal-to-noise ratios γ (dotted) and γ ′ (dashed) for
GaAs (black) and InGaAs (red). We used Br = 1 T, 1/kF = 50 nm,
and λp = 10 nm for all materials and geometries. We also used
g = −0.44, m = 0.067me, and EF = 0.23 meV for GaAs, and g =
−3.9 (2D) and g = −12 (1D), m = 0.043me, and EF = 0.35 meV
for InGaAs.
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for one-dimensional samples below.) In addition, the signal
in two-dimensional samples might be enhanced by refocusing
(see below).

Interestingly, assuming all parameters are fixed, the ratio of
the figures of merit for a one- and two-dimensional medium
boils down to (neglecting numerical prefactors and functions
d )

B2D
t

B1D
t

,
γ 2D

γ 1D
∼ λp

R
. (17)

Therefore, a one-dimensional medium is generally preferred
if R � λp. The dependence of λp appears because of the
area from which the signal is collected, scaling as λd

p, while
R appears because the susceptibility is at large distances
inversely proportional to Rd . Apart from this area scaling,
a one-dimensional wire is directly accessible for both the
source and the probe, while a two-dimensional electron gas is
buried tens of nanometers below the material surface, limiting
both λp and λs from below. This practical issue makes a
substantial difference as the dipolar fields drop quickly with
these distances.

B. Contact source

In this section we consider an alternative source, based on
a local exchange, rather than dipolar magnetic interaction. A
magnetic atom fixed at an AFM tip at position ls interacts with
the medium through the Hamiltonian

HI = β I · ρs(ls). (18)

Here h̄I is an atom spin operator, and β parametrizes the s(p)-d
exchange interaction strength. Typical values for β for a Mn
impurity in a zinc-blende structure semiconductor are 9 meV
nm3 for electrons and −15 meV nm3 for holes.34,35

Using a contact source, Eq. (18), instead of a dipole
source, Eq. (2), amounts to replacing the source field flux,
commented on below Eq. (14), by �s ∼ βI/μBgA3−d (w),
where w is the transverse dimension of the medium (the
half-width of the heterostructure for 2DEG, the wire radius
for a one-dimensional case). We get analogs of Eqs. (13) and
(14) in the form

Bt ∼ − �d

4π�3−d

gβIμBμ0(wλp)d−3χ (R)d (2kF λp),

(19)

and, with gI the source atom g-factor,

γ ∼ �d

�3−d

g

gI

β(wλp)d−3R3χ (R)d (2kF λp). (20)

Using the result for χ in the noninteracting case, we get

Bt ∼ π−1−d�d

16d�3−d

gβI
m

h̄2 μBμ0
(wλp)d−3

k2−d
F Rd

d (2kF λp), (21)

where we again suppressed the oscillating factor, and

γ ∼ − 1

4πdd

�d

�3−d

g

gI

βI
m

h̄2

(wλp)d−3

Rd−3k2−d
F

d (2kF λp). (22)

The illustrative values for two different semiconductor ma-
terials in one and two dimensions are shown in Fig. 4. The
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FIG. 4. (Color online) Figures of merit for an exchange-based
source (per one Mn ion) for n-GaAs (black) and p-ZnTe (red) in (a)
two dimensions and (b) one dimension. In addition to 2w = 8 nm
and parameters given in Fig. 3, we used gMn = 2, IMn = 5/2, and
β = 9 meV nm3 for n-GaAs, and β = −15 meV nm3 and g = 2 for
p-ZnTe.36

signal for an exchange based source with a single Mn atom is
comparable to a dipolar source considered before. However,
in principle there might be many magnetic atoms on the
source tip. On the other hand, an atomistically localized source
requires free access to the medium surface and is therefore not
directly available for standard 2DEGs. The question then arises
of how to enable this technique for a 2DEG. One possibility
is to look for exposed (surface) two-dimensional gases, such
as Shockley-Tamm states on metal surfaces37 or topological
insulators.38 On the other hand, cleaved edge samples39 allow
one to access even the standard heterostructure 2DEG, such
as the one in GaAs, which are our primary concern. Secondly,
we remind the reader that our previous treatment of a static
response assumes that the source field is fixed, irrespective of
the medium backaction. This requires that the atom moment
itself is fixed.40 This can be achieved by a ferromagnetic or an
antiferromagnetic coating of the tip.

C. Refocusing

A different view on the origin of Eq. (17) is presented
on the schematics in Fig. 5(a). Looking at the signal as
emanating from the source, one-half of it is collected at the
probe in one dimension, while only a fraction of λp/R is
in two dimensions, where most of the signal is lost. This
leads us to consider possible geometries in which the lost
signal could be recovered. Immediate examples are a parabolic
antenna-receiver setup or source and probe in foci of an ellipse
[see Fig. 5(b)]. That electrons in 2DEGs can be waveguided by
top gates has been demonstrated.41,42 Even though the time-
dependent picture we gave above is not completely adequate
for a static response, and the susceptibility for shape-designed
structures would need to be calculated, qualitatively we expect
that the suppression given in Eq. (17) can be removed by
refocusing. Taking again the distance of 1 micron, we estimate
the refocusing would enhance the signal by an order of
magnitude.

D. Interactions

Above we discussed noninteracting systems. Gener-
ally, the susceptibility is expected to be substantially en-
hanced by electron-electron interactions in one10,18 and
two dimensions.19–23 How exactly the influence looks is
one of the main motivations for studying the susceptibility
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(a) (b)

FIG. 5. (Color online) Illustration of a signal loss and its recovery
by refocusing in two dimensions. (a) In an open system, the probe
(yellow) collects only a small fraction, of order λp/R, of the signal.
(b) With the source and the probe in the foci of an ellipse, all paths
with a single reflection from a boundary have the same length, leading
to a signal refocusing.

experimentally. The uniform enhancement of the spin suscepti-
bility can be understood as the renormalization of the effective
mass and g-factor, with a good correspondence of the theory
and experiments.43,44 The enhancement grows upon lowering
the density, and close to the metal-insulator transition almost an
order of magnitude enhancement has been seen in 2DEGs.24,25

Since we consider the low-density regime, one order of magni-
tude enhancement for the signal magnitudes compared to what
we plot for two-dimensional structures is reasonable. However,
we expect that the local susceptibility might be boosted even
stronger, e.g., at long distances. This is exemplified by a
one-dimensional wire in the Luttinger liquid regime, for which
the spin susceptibility has been derived as10,18

χ (R) ≈ − 1

4πavFh̄

�(gc − 1/2)

�(gc)�(1/2)
cos(2kF R)(a/R)2gc−1. (23)

Here a is the lattice constant, vF is the Fermi velocity, � is
the Euler Gamma function, and gc is the Luttinger interaction
parameter for the charge sector. The noninteracting result,
Eq. (6), is recovered for gc = 1. Smaller values of gc reflect
stronger repulsive interactions, resulting in a slower decay
of the susceptibility with the distance. Using Eq. (23), we
plot in Fig. 6 the range for the source-probe distance where
the susceptibility is experimentally easily accessible, as a
function of gc. Strong enhancement of the susceptibility
with the interaction strength is apparent. The interaction can
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FIG. 6. The experimentally accessible region (shaded) in the area
of the interaction strength (Luttinger parameter gc, x axis) and source-
probe distance (R, y axis). The region is defined by the area below the
solid line (Bt = 10 nT) and above the dashed (γ = 1) or dotted (γ ′ =
1) line for (a) GaAs and (b) SiGe one-dimensional wire. We used
λp = 10 nm and 1/kF = 50 nm. Further, g = 5.6, m = 0.2me (SiGe)
and g = −0.44, m = 0.067me (GaAs). With the density modulation
lock-in technique, the dashed line is irrelevant and the shaded area
extends all the way below the solid line.

substantially improve the figures of merit for the susceptibility
measurement, enhancing them by orders of magnitude.

IV. CARBON-BASED MATERIALS

The carbon-based low-dimensional structures acquired a
great deal of attention recently.45–47 Apart from their present
popularity, stemming from suggestions for their use as a basis
for spintronics based devices as well as for spin qubits,48–63

we are motivated by their predicted strong electron-electron
interactions and potentially strong spin susceptibility sig-
nal magnitude.64–68 Namely, since the surface is exposed
even in their two-dimensional form, they can be closely
approached and are amenable also to the exchange based
(contact) sources. On the other hand, the helical character
of graphene wave functions often leads to the susceptibility
sign inversion upon moving between sublattices. For example,
for metallic nanotubes χAB = −χAA, where A and B denote
the sublattices.68 Since the probe we consider does not have
an atomic resolution, the signal averages out to zero, and the
susceptibility cannot be measured in this case.

The spin susceptibility for a single-layer graphene at the
Dirac point is given by64,65

χ (R) ≈ 1

512h̄vF R3
, (24)

with vF the Fermi velocity. In a bilayer graphene,65

χ (R) ≈ m

32π2h̄2R2
, (25)

with m the effective mass (Ref. 69 found m = 0.029me). In
these formulas, we averaged the susceptibility over the unit
cell, so that fast oscillating terms, as well as the sublattice de-
pendence, disappear. Doping a single-layer graphene increases
the susceptibility, changing its long-distance fall-off from
1/R3 to 1/R2. However, this slower decaying contribution
has the opposite sign on different sublattices, so that for
our purposes there is little difference between doped and
pristine graphene.70 The expected signal in graphene (figure
not shown) is well below the considered detection threshold.

We now consider a semiconducting carbon nanotube,
where the susceptibility atom-to-atom sign oscillations are not
present, and χAA = χAB = χ , with68

χ (R) = kG

4πh̄vF

cos(2kF R)

kF R
, (26)

where kG = 1/3w and w is the nanotube radius. We illustrate
the expected signal in Fig. 7. Based on these numbers,
we expect the signal to be measurable for both dipolar
and exchange based probes, with further enhancement by
interactions.

V. ALTERNATIVE SETUPS

A. Pump glued to probe

A possible way to suppress the background noise from a
dipolar source is to consider the probe and source fixed on the
same crystal. Their distance is then constant (up to negligible
thermal mechanical vibrations), and so is the background field.
We evaluate the signal assuming that the distance between the
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FIG. 7. Figures of merit for a semiconducting carbon nanotube,
Bt/10 nT (solid), γ (dotted), and γ ′ (dashed), for (a) dipolar and
(b) exchange source per single Mn atom. We used β/v0 = 4 eV,34

vF = 106 m/s, w = 1 nm, kF = 1/50 nm, λp = 5 nm, and g = 2.

probe or the source and the medium is smaller than the Fermi
wavelength, λp,λs � π/2kF , and we use the short-distance
limits for noninteracting particle susceptibility in one and two
dimensions. For the dipole-based source, we get

Bt ∼ −Br

�2
d

4π
μ0g

2μ2
Bλd

s λ
d−3
p χ (0), (27)

and for an exchange-based source,

Bt ∼ �d

4π�3−d

μ0gμBβI (λpw)d−3χ (0). (28)

In these formulas, the overline denotes averaging,71

χ(R) = A−1
∫

r∈A

dr χ (|Rx̂ + r|), (29)

over the area A with linear dimension of the order of λp for
d = 1, and 1/kF for d = 2. The reason for this difference
is again the saturation of the dipolar field in two dimensions
once λp falls below 1/kF . Equations (27) and (28) show that
the single tip design, depicted in Fig. 8, allows us to access
the susceptibility on short length scales, complementing the
separate source-probe setup considered previously. We present
the estimated signal strength in Fig. 9. The stronger signal in
this setup arises from the fact that the spin susceptibility has
its maximum close to R = 0. Growing several pillars with an
NV center detector at each, displaced from the source tip in
various distances, all on a single crystal, is another possibility
of a reduced fluctuating background measurement.

FIG. 8. (Color online) Single pillar hosts both the probe and the
source, the latter as the (anti)ferromagnetic coating. The background
field is not correlated with the probe distance from the medium. The
short-distance structure of the susceptibility is accessible.
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FIG. 9. (Color online) The signal for the single pillar setup in
(a) 2D and (b) 1D geometry, for a dipolar [black; using Eq. (27)]
and exchange [red; using Eq. (28)] source. Values plotted for GaAs
(solid), InGaAs (dashed), p-ZnTe (dotted). We used parameters given
in Figs. 3 and 4 and set λs = λp .

B. Spin noise

The spin susceptibility is related to the equilibrium noise via
the fluctuation-dissipation theorem. This offers an interesting
alternative to the source-probe setup. Instead of the magnetiza-
tion produced by the source, one can aim at the magnetization
noise in the medium measured by a single probe or a pair of
probes, as depicted schematically in Fig. 10. We now estimate
the signal in such a setup.

The fluctuation-dissipation theorem,

2h̄ Imχαα(r,r′; ω) = [exp(−h̄ω/kBT ) − 1]Sαα(r,r′; ω),

(30)

relates the imaginary part of the susceptibility to the dynamical
structure factor

Sαα′ (r,r′; t − t ′) = 〈ρs
α(r,t)ρs

α′ (r′,t ′)〉. (31)

Here T is the temperature and kB is the Boltzmann constant,
and the averaging on the right-hand side is with the equilibrium
density matrix.

The correlator of the probe(s) magnetic fields is

SB(|r − r′|,t − t ′) = 〈B(r,t)B(r′,t ′)〉. (32)

Assuming this correlator decays monotonically over a time
scale 1/γ , with h̄γ of the order of the bandwidth, formally
defined as

γ −1 = SB(R,0)−1
∫ ∞

0
dt SB(R,t), (33)

FIG. 10. (Color online) The spin susceptibility from noise.
Equilibrium magnetization fluctuations (random waves) reflect the
susceptibility through the fluctuation-dissipation theorem. Observing
a single probe reveals χ (r,r′) for r ≈ r′, whereas noise cross-
correlation of two distant probes is required to map the spin
susceptibility in space coordinates.
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FIG. 11. (Color online) The expected level of noise in a 2D
(black) and 1D (red) geometry in GaAs (solid) and InGaAs (dashed).
(a) Typical value of the noise-induced magnetic field, Eq. (34). (b)
Phase correlator decay scale, κχ(0), using Eq. (39). In addition to the
parameters given in Fig. 3, we used γ = 1 meV and T = 4 K.

we use the fluctuation-dissipation theorem to relate the
susceptibility to the equal times correlator,

SB(R,0) ∼
( μ0

8π
μBg�dλ

d−3
p d (2kF λp)

)2
χ (R)E∗. (34)

Here E∗ = πh̄γ /2 ln(h̄γ /2kBT ) at low temperature, h̄γ �
kBT , and E∗ = kBT at high temperature, h̄γ � kBT .72 The
overline on the susceptibility denotes an average over an
area with linear dimension λp, which gives χ (R) ≈ χ (R)
for R � kF � λp and χ(0) is understood as described in
the previous section, below Eq. (29). A typical magnitude
of the field produced by the magnetization noise is then
B ∼ √

SB(0,0), and we plot it in Fig. 11(a).
The previously derived field magnitude is a representative

instantaneous value. Though typically well above the detection
limit, such a comparison, as done in Fig. 11(a), implicitly
assumes the measurement has a time resolution below the
noise decay-in-time scale, being 1/γ . If we relax this time-
resolution requirement, we can proceed in the following way.
One conceivable measurement is the noise-induced decay of
the phase autocorrelation (a single-probe measurement),

A(t) = 〈exp[i�(0)] exp[−i�(t)]〉, (35)

where the accumulated phase is

�(t) = (μp/h̄)
∫ t

0
B(t ′)dt ′, (36)

with μp the probe magnetic moment. Assuming, for simplicity,
that the probability distribution of the magnetization fluctua-
tions is Gaussian, we get

A(t) = exp

(
− μ2

p

2h̄2

∫ t

−t

dt ′ SB(0,t ′)(t − |t ′|)
)

≈ exp[−(μp/h̄)2SB(0,0)t2min{2/(γ t),1}]. (37)

Assuming low time resolution t � 1/γ and the low-
temperature limit for E∗, we finally get

A(t) = exp[−κ χ(0) t], (38)

with

κ ∼ μ2
pπh̄−1

(
μ0

8π
μBg�dλ

d−3
p d (2kF λp)

)2

. (39)

The frequency scale κχ(0) is plotted in Fig. 11(b).

To infer the susceptibility spatial dependence, we consider
a measurement of the cross-correlation of phases accumulated
over an identical interval of time of length t in two probes
positioned at relative distance R,

C(R,t) = 〈exp[i�1(t)] exp[−i�2(t)]〉. (40)

We get expressions analogous to those above, namely C(t) is
given by Eq. (37) upon replacement, SB(0,t ′) → SB(0,t ′) −
SB(R,t ′), and

C(R,t) = exp{−κ[χ(0) − χ (R)]t}, (41)

with κ given by Eq. (39).
The advantage of the noise measurement is that there is

no need for a source, and consequently no accompanying
background field. The disadvantage is that unless a time-
resolved measurement with the resolution below 1/γ is
available, the susceptibility is given by Eq. (34) with a factor
E∗ that depends on the temperature and on not very well
known characteristics of the noise fluctuations, such as the
correlation scale γ , and possibly with non-Gaussian statistics
character (higher moments in the correlators).

VI. CONCLUSIONS

We investigated the feasibility of magnetic spatially re-
solved measurements of the spin susceptibility of low-
dimensional structures. We suggested using a nanoscale
magnetic sensor based on an NV center implanted in a
nanopillar attached to an AFM tip. We compared the expected
signal magnitude with the experimentally demonstrated de-
tection limit. We suggest a two-tip (single-tip) source-probe
measurement to access the long-range (short-range) structure
of the spin susceptibility. We quantified the effectiveness of
a dipolar and an exchange-based magnetic source. We also
analyzed an alternative setup in which the susceptibility is
extracted from the correlations in the noise, for which no
source is necessary. We find that in one-dimensional systems,
such as semiconducting nanowires and carbon nanotubes, the
susceptibility is typically well within the current detection
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FIG. 12. The modulation functions 1 (dashed) and 2 (solid),
which quantify the probe signal collection efficiency. The x axis is in
(a) linear and (b) logarithmic scale.
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limits. The two-dimensional electron gases with high g-factors
are most probably brought above the detection limit by
interactions. In graphene we expect the signal to be too
weak for a measurement, while the spin susceptibility of
GaAs/AlGaAs 2DEGs might be detectable if interactions turn
out to be strong enough and/or signal refocusing techniques
are employed.
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APPENDIX: �d FUNCTIONS

To calculate the modulation functions d , we assume
a source flux is localized below the spin susceptibility
wavelength around the coordinate system origin and induces a

magnetization profile m(x,y) ≈ c cos[2kF (x − R)], which is
a good approximation for 2kF R � 1. We define d writing

Bt ([R,0,λp]) = μ0

4π
c cos(2kF R)�dλ

d−3
p d (2kF λp). (A1)

The left-hand side is given by the integral

Bt (r) =
∫

dr′Tzz(r − r′)m(r′), (A2)

which can be analytically calculated with the assumed sim-
plified form of the magnetization profile. We get 2(x) =
2x exp(x) and

1(x) = 2

3
x2K2(x) − 2

3
G

2,1
1,3

(
x2

4
−1/2

0,1,1/2

)
, (A3)

with Kn the modified Bessel function of the second kind and
G the Meijer G function. The small and large argument limits
of 1 are given in the main text and both 1 and 2 are plotted
in Fig. 12 for illustration.
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